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The barotropic stability of the mean 
winds in the atmosphere 
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The Johns Hopkins University 

(Received 20 December 1960 and in revised form 20 September 1961) 

This paper considers the stability of a barotropic current on a beta earth. The 
motion is assumed to be horizontal, non-divergent and barotropic. The current 
is taken to  be of the form U(y) = A sech2 by + B. The perturbations are required 
to approach zero as y approaches & co. We introduce the non-dimensional wave- 
number I and a parameter x, which is a measure of the rotation effect. xis inversely 
proportional to p. 

There are only two kinds of perturbations: symmetric disturbances (those with 
maximum amplitude at  y = 0) and antisymmetric disturbances (those with zero 
amplitude a t  y = 0). We find the neutral curve in the (x, E2)-plane for both types 
of disturbances. The rates of amplification in the immediate vicinity of the 
neutral curves are also found. It is seen that the beta effect, which is due to the 
earth's rotation, tends to stabilize the current. For the symmetric disturbances 
we find a band of unstable wavelengths when x > 4; and for large the estimated 
curve of the maximum value of the imaginary part of the phase velocity is 
asymptotic to the lower branch of the neutral curve. The antisymmetric dis- 
turbances are more stable than the symmetric disturbances. 

1. Introduction 
The motivation for this investigation is the problem of the stability of the 

mean westerly current in the upper atmosphere. This current, which varies in 
strength with latitude and height, is strongest near the tropopause at  about 
30"N. (Mintz 1955). At present, a complete analysis of the three-dimensional 
stability problem is too complicated for mathematical treatment. In  order to 
simplify the analysis, most investigators have considered one of two approaches. 
The first is to allow the current to vary in the vertical direction only and to 
neglect latitude variations. This formulation is known as the baroclinic stability 
problem (see Charney 1947; Kuo 1952). The other approach is to allow the 
current to vary in the latitudinal direction only, and to neglect vertical varia- 
tions. This formulation is known as the barotropic stability problem. In both 
formulations frictional forces are neglected. 

Here we consider the latter approach. The barotropic stability problem has 
been studied by Foote & Lin (1951), and Kuo (1949, 1951). These authors show 
that the barotropic basic current is stable if the absolute vorticity profile is 
monotonic. It will be seen in the analysis below that one of the primary effects 
of the earth's rotation is to reduce the instability of the barotropic current. This 
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effect is the characteristic difference between the stability of the current con- 
sidered below and the stability of the usual two-dimensional jet of hydrodynamics. 

Earlier, Kuo (1949) considered a symmetric jet with an extremum of absolute 
vorticity on either side of the jet maximum. He finds a band of unstable wave- 
lengths between the long neutral waves of Rossby et al. (1939) and Haurwitz 
(1940)) and the shorter stable waves. The phase velocities of these waves are 
between the maximum and minimum velocity for the latitude belt. The long 
neutral waves all have phase velocities smaller than Umh. In  addition, Kuo 
proves that no neutral wave can have a phase velocity greater than Urn,,. 

In  his second paper, Kuo (1951) finds the neutral-wave perturbation by 
numerical integration for a jet on a spherical earth. The wave-number (number 
of waves around the globe) of this wave is 9.5, and he infers that the maximum 
instability is a t  wave-number 4 or 5. 

Here the work of Kuo (1949) is extended by considering a more realistic sym- 
metric jet. The problem is non-dimensionalized, and the parameters 1 and x are 
defined: I is the non-dimensional wave-number and x is a measure of the rotation 
effect. x is inversely proportional to the gradient of absolute vorticity of the 
earth’s rotation. The stability of the jet is considered for all values of 2. KUO’S 
analysis is extended by considering both symmetric and antisymmetric dis- 
turbances. (Symmetric disturbances are those with maximum amplitude at  the 
jet, and the antisymmetric disturbances are those with zero amplitude at  the 
jet.) Kuo (1949, 1951) does not consider the antisymmetric disturbances. We 
find that the antisymmetric disturbances are more stable than the symmetric 
disturbances. 

2. The perturbation equations and boundary conditions 
The motion is assumed to be horizontal, non-divergent and barotropic. The 

basic motion consists of a fluid velocity from west to east. We assume that the 
largest velocities in the basic flow occur in a very narrow latitude belt, and that 
the basic velocity quickly approaches a constant value as we approach either 
the pole or the equator. Under these conditions it is legitimate to approximate 
the spherical co-ordinates on the earth by Cartesian co-ordinates, x, y and z, 
directed toward the east, north and vertical, respectively (see Long 1960). The 
respective velocities are u, v and w. The basic velocity takes the form U = U(y). 
Since the flow is non-divergent and horizontal, we may define a stream-function 
for the lserturbed motion bv 

The dynamic equation to be satisfied for this motion is the two-dimensional 
vorticity equation. This equation states that for any fluid element the vertical 
component of absolute vorticity is conserved. The absolute vorticity includes 
both the relative vorticity due to motion relative to the earth and the vorticity 
of the earth’s rotation. This equation takes the form 
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Here a prime denotes a differentiation with respect to y ,  and ,8 = (d /dy)  2w, 
where o is the vertical component of the earth’s rotation. In  the following 
analysis we may take ,8 = const., since we are considering a jet confined to a 
narrow latitude belt (see Long 1960). The approximation used above in which 
we replace the spherical co-ordinates by Cartesian co-ordinates, and consider 
,8 to be constant is known as the beta plane approximation in meteorological 
literature (see Rossby et al. 1939, and Haurwitz 1940). 

If we now set @(x, y ,  t )  = eia(l-ct)q5(y), (1) becomes 

$“-a2$+{(/3- U”)/(U-C)]q5 = 0, (2) 

(3) 

where a is the wave-number and c is the phase velocity (which may be complex), 
i.e. c = c, + xi. 
If ci + 0, the stream function contains a term exponential in time; if ci > 0, the 
wave is amplified; if ci < 0, the wave is damped; and if ci = 0, the wave is neutral. 

The form of U(y) is taken as 

U ( y )  = Asech2by+B, (4) 

where A,  B and b are arbitrary constants to be specified in any particular case. 
We now non-dimensionalize equation (2). For this purpose we define: 

( 5 )  I X* = bx, y” = by, t* = bAt,  C* = (C-B)/A, 

1 = a/b, x = +Ab2/,8, U* = sech2y*, q5* = q5b/A. 

Thus, without the asterisks, the non-dimensionalized form of equation (2) 
becomes 

(iY’-Pq5+{(+x-l- U”) / (U-c ) )$  = 0. (6) 

The graph of the non-dimensionalized velocity profile is shown in figure 1. 
In  figure 2 we have plotted some typical absolute vorticity profiles for U = sech2 IJ. 
In  this figure the absolute vorticity is given by 

(7 )  5-5 - 1  -1 
0 - 3 x  Y-U’,  

where C0 is the absolute vorticity at  y = 0. 
We impose the boundary conditions that $ = 0 at y = ? co. Since U is sym- 

metric, it is evident that the two independent solutions may be taken as an 
even function and an odd function of y respectively. The former corresponds to 
a symmetric, and the latter to an antisymmetric solution. If is the symmetric 
solution and q52 is the antisymmetric solution, the boundary conditions become 

$;(o) = 0, $1(m) = 0; @ a )  

q52(0) = 0, q52(m) = 0. ( 8 b )  

Thus, a t  the jet, $2 has zero amplitude and q51 has a maximum in amplitude. 

3. The neutral solutions 
In  this section we state some results that Kuo (1949) found concerning neutral 

solutions for his problem, and then we find the neutral solutions for the above 
velocity profile. For a finite jet confined between boundaries, Kuo (1949) 
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FIGURE 1. U = secha y. 

FIGURE 2. The absolute vorticity profiles associated with U = sechZ y 
for representative values of x. 
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proves that if U = c at  some point y = ye for a neutral wave, then /3- U" is zero 
a t  that point. He also shows that no wave can move with a phase velocity 
greater than Urn,,. These proofs, which are based on the Sturm comparison 
theorem (Ince 1944), can be carried over directly to our case with only small 
revisions. Thus we assume these theorems in the following work. 

First, we find the phase velocities of the neutral waves for which c > 0 from 
the roots of the equation Qx-1- U" = 0. By differentiation we find that 

1 3 x  -l- U" = 6 sech4 y - 4 sech2 y + Qx-' 
or Qx-1 - U" = ~ ( U - C , )  ( U - c , ) ,  (9) 

where c1 = Q{1 + (1 - +x-l)*> and c2 = ${I- (1 - Qx-l)*}. (10) 

These are the phase velocities of the neutral waves for which c > 0. 
The differential equation (6) becomes 

where either subscript on c may be valid, depending on the value of the phase 
velocity. If the phase velocity is cl, we have c2 in ( l l ) ,  and vice versa. Equation 

(12) 
(1  1) is of the form q5" + [6 sech2 y - k2] q5 = 0, 

where k2 = 6c1, + 12. (131 

We make a change of variable and set Z = tanh y. The differential equation then 
becomes 

( 1 - 2 2 ) ~ - 2 2 ~ + [ 6 - & 2 ] ~  a22 dZ = 0. 

This equation is now compared to Legendre's equation 

22-+ V ( V + l ) - - 2  q5=0. (1 - 2 2 )  ~ - a2W a22 dW a2 [ 1 - 2  k2 1 
For correspondence we need v = 2 or v = - 3. 

Equation (15) has been discussed fully in the Bateman Manuscript Project 
(1953) and in other references. The only solutions meeting the boundary con- 
ditions (Sa )  or (8b)  are the associated Legendre polynomials P[(Z) ,  where 
k = 1 or k = 2 .  

Thus, for boundary conditions (Sa) ,  we find the neutral solutions 

q51 = 1 - Z 2  = sech2y, 
provided k = 2,  i.e. 

4 = 2{ 1 f (1 - $x-')&} + 12. 

These are the only symmetric neutral solutions with c > 0. 
Equation (17) determines 12 as a function of x for the neutral wave. l2 is plotted 

against x in figure 3. Because of the & sign, there are two neutral waves for each 
x if x > +. At x = 8, there is only one neutral wave; and for x < 4 there are no 
neutral waves with c > 0. Along the upper branch of the neutral curve in figure 3, 
c = +{l + (1 - $x-l)*}, and along the lower branch c = Q{1- (1 - &x-l)&}. In  the 
next section it is shown that waves are amplified for wavelengths between those 
of the two neutral waves. Outside this wavelength band there are stable waves. 

26 Fluid Mech. 12 
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the unique neutral solution with c > 0:  

provided k = 1, i.e. 

Equation (19) has only a minus sign since (1 - &')* would imply a negative Z2. 
l2 is plotted against x in figure 4. In  this case we have only one neutral wave for 
each x if x 2 %. For this neutral wave c = g{l + (1 - &x-')*}. As shown in the 
next section, the waves with wavelengths longer than this neutral wave are 
unstable and those with shorter wavelengths are stable. 

For boundary conditions ( 8 b ) ,  i.e. for antisymmetric solutions, we find for 

q& = Z( 1 - Z2)* = tanh y sech y, 

1 = 211 - (1 - &')*} + 12. 
(18) 

(19) 

X 
FIGURE 3. The stability of the symmetric disturbances 

In  addition to these neutral waves, there is a group of neutral waves which are 
bounded as y + 5 GO, but which do not meet the boundary conditions (8a)  or 
(8b ) .  These waves all have c < 0 and correspond to  the waves of Rossby 
et al. (1939) and Haurwitz (1940). It should be noted here that, in terms of 
dimensional quantities, c < 0 merely means that the dimensional phase velocity 
is less than U,; it does not necessarily mean that the waves propagate toward 
the west. From equation (16) we see that as y -+ rt co, -+ dcosmy + 3? sinmy. 
Also as y --f f co we find that 

which is the frequency equation for these waves. This is the usual formula for 
the speed of Rossby waves. Kuo (1949) finds similar waves. 

P+m2 = - 1/3xc, (20) 

4. The amplified waves 
To find ci near the neutral curve in the (x, ,?)-plane we may expand c in a Taylor 

(21) 
series of the form: ac ac 

ax- c = c,+asds+-ldx-l+etc., 
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where s = - l2 and co, ac/as and ac/ax-l are evaluated at some point (xo, 1;) on 
the neutral wave. In  the following approach the derivatives ac/as and ac/ax-1 
are calculated from the neutral solution and the higher derivatives are neglected. 
Hence we should have a good approximation to c if the values of 12 and x are 
sufficiently close to the neutral curve. 

To findt the derivative ac/as we take the derivative of (6) with respect to s: 

where d = a$/%. If we multiply (22) by 4 and (6) by 4, subtract, and then 
integrate, we find that 

By a similar argument we find that 

In  both these expressions we note that there is a singularity at  y = yc where 
U = c so that we must integrate around this point. To determine whether to 
take the path of integration above or below this point, we consider the viscous 
solution in the limit as the viscosity approaches zero. This problem has been 
investigated by Foote & Lin. They find that the path must be taken below the 
point y = yc if U‘(yc) > 0 and above this point if U’(y,) < 0. Since U’(yc) < 0 
for y > 0, we must take the path of integration above y = yc. 

The expressions (23) and (24) can now be used to calculate the values of ac/as 
and ac1ax-l along the neutral curves, If we use the variable 2 = tanh y and now 
integrate from Z = 0 to Z = 1, the values of atlas and ac/ax-l can be found 
directly by integration. From the solution q51 on the neutral curve in figure 3 
we find that 

(25 )  ~- 
1 

3c0[ - 6 + (1 - 3c0) (1 - co)-b (log K + in)] ’ 
_ -  - ac 
as 

where K = (1 + (1 -c0)&}/{l - (1 -cop}. 

Likewise we find that 

2 + co( 1 - co)-4 (log K + in) ______ 
ac __ -- ~- 

ax-’ - 12c0[ - 6 + (1 - 3c0) (1 - c o ) d  (log K + in)] * 

The factor of main interest is ac,/as. We find for this term 

+n-C,l( 1 - 3c0) (1 - co)-t 
.~ 

aci 
= -  as [ - 6 + (1 - 3c0) (1 - co)-t log ~ ] 2 +  [n-( 1 - 3c0) (1 - co)-$]z’ 

(27) 

Since we know co = &{1+ (1 - &x-l)&] along the upper neutral curve in the (x, I?) 
plane, we see that aci/as is positive there. Also, since co = ${ 1 - (1 - 1 2x --I 1 4 }along 

t This calculation for &/as follows that given by Lin (1953). Kuo does a similar oalcula- 
tion in his 1949 paper. 

26-2 
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the lower neutral curve, we see that ac,/as is negative there. Hence the region 
between the two neutral curves in figure 3 has amplified waves. Thus disturb- 
ances with wavelengths between those of the neutral waves are amplified and 
disturbances with wavelengths outside this band are stable. 

Now consider the case of figure 4. Here we have only one neutral wave with 
c > 0 for x 2 3. This neutral wave has a velocity co = +{l + (1 - &y-l)+}. We find, 
for the values of acps  and acpx-l, 

1 - _ -  ac 
as 6[ - 1 - 21 1 13c0)  + (1 - c0)* (1- 3c0) (log + 
- 

(28) 

' 

ac 1 n( 1 -cop  (1 - 3CJ -- - - -~ 
8x-l 12 [ - 1 - 2(l- 3C0) + (1 -Co)* (1 - 3C0)  (log K f n i ) ]  

K 

FIGURE 4. The stability of the antisymmetric disturbances q5*. 

and, for the value of aci/as, 

- aci - 7r( 1 - co)4 (1 - 3c0) - 
as 6[ - 1 - 2( 1 - 3c0) + (1 - co)a (1 - 3c0) log K ] ~  + [n( 1 - co)i (1 - 3cO)l2' 

(29) 

Since 1 - 3c0 < 0 we find that ac,/as is positive. Hence disturbances with wave- 
lengths longer than the neutral wave are unstable and those with shorter wave- 
lengths are stable. 

In  addition to the values of c, and ci calculated from ac/as and ac/ax-l, we have 
the data of Lessen & Fox (1955) for the case x = co. They consider the case of an 
inviscid jet. Although they do not give a mathematical expression for U(y), 
it  is evident they used the form sech2 y since this form of a velocity profile is the 
similarity solution for a laminar jet in a viscous fluid as given by Schlichting 
(1960). Furthermore, their graph of U(y) agrees with our plot of sech2y to the 
order of the errors arising in reading the graph. They evaluate ac/as for the upper 
branch of the neutral curve at  x = co in figure 3 and ac/as for the neutral curve 
at  x = co in figure 4. To show how closely their results agree with the above theory, 
table 1 is given which compares these values for both formulations. It is seen 
that the difference in values is of the order of 0.3 %. In  addition, Lessen & Fox 
calculate ci and c, us. l 2  by numerical integration. For this work see figure 5. 

We have given ac,/as, &,/as and aci/ax-l in table 2 for representative values 
of x. From these values we estimate the curve ci = 0.025 for figure 3 and figure 4 
where it is shown as a dashed line. Also the line of maximum ci is estimated for 
figure 3 where it is shown as the dotted curve. We notice that this curve quickly 
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becomes asymptotic to the lower neutral curve for large x. This result is 
reflected in figure 5 (Lessen & Fox) where ci appears to approach a maximum as 
l2  approaches zero. 

I 

C 

FIGURE 5. The data of Lessen & Fox (1955). The dashed lines are the slopes calculated 
from ac,/as and &,/as. The solid lines are the values found by numerical integration. 

~ 

Lessen & Fox 

- = - 0.0421 + 0.02771i 

U = sech2 y 

ac ac 
as as 

ac ac 
as 35 

- = - 0'04217 + 0.027711 

= 0.0119 + 0.09021i - = 0.01193 + 0-09031i 

TABLE 1. The values of &/as at x = co as given by Lessen & Fox and by the 
above theory for both types of disturbances, and &. 

From figures 3 and 4 we see that the symmetric disturbances are stable if 
x < and the antisymmetric disturbances are stable if x < +. For larger values 
of x it  also appears that the symmetric disturbances are more unstable than the 
antisymmetric disturbances in the sense that they have larger amplification 
rates. From the values of aci/as for both types of disturbance for a given x it  
appears that the maximum value of 1ci is largest for the symmetric disturbances. 
Thus, if the jet is unstable, the fastest growing disturbances apparently are the 
symmetric disturbances of medium wavelength. 
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Upper curve, Lower curve, 
figure 3 figure 3 Figure 4 

( G A S  0 0 

(cox-% - 0.05344 - 0.05344 - 
(c,.), - 0.16667 - 0.1667 z } x=* 

(c,), - 0.08410 - 0.4004 - 0.06404 } x=Q 

(c,.)~ - 0.05123 - 1.2967 - 0.001848 } x=2 

( c , . ) ~  - 0.04550 - 1.6081 0*007106 } x=5 

( c ~ ) ~ - ~  Not calc. - 0.09870 - x = 0.54 
- (c i ) ,  0.02292 - 0.08668 

(c,), - 0.09886 - 0.3114 
( C ~ ) ~ - I  - 0.03032 -0.1147 

x = 2- 
1 2  - - 1  

(ci), 0.02578 - 0.1699 0.1 141 

( ~ j ) ~ - i  -0.02578 - 0.1599 - 0.1141 
(ci), 0.02805 - 0.4898 0.1091 
(c,), - 0.06379 - 0.6894 - 0.02366 x=1 
( ~ i ) ~ - i  - 0.01983 - 0.3464 - 0.07715 
(4, 0.02827 - 1.7707 0.09960 

( ~ i ) ~ - i  - 0.01632 - 1.0223 - 0.06750 
(ci), 0-02800 - 6.1087 0.09393 

(ci), x -0.01476 - 3.2196 - 0.04951 

0*09031 1 x=00 
( C i ) ,  0.02771 -a 
(c,), - 0.04217 00 0.01193 
( ~ i ) ~ - i  - 0.01386 -a, -0.04516 

TABLE 2. The values of aci/as, ac,/as and acJi3x-l calculated along the neutral 
curves in figures 3 and 4. Here (ci), = act/&, (c,), = ac,/as and (ci)-' = aci/ax-l. 
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